
Abstract. In this work we comment on the statement
about the nonuniqueness of the solution of Bader’s
equation for defining atoms in molecules reported in the
article of P. Cassam-Chena€�� and D. Jayatilaka in
Theoretical Chemistry Accounts (2001) 105: 213–218
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1 Bader’s interatomic surface as a solution of
a partial differential equation

In the article ‘‘Some fundamental problems with zero
flux partitioning of electron density’’, which appeared in
Theoretical Chemistry Accounts (2001) 105: 213–218 [1],
the authors point out the problem of the nonuniqueness
of the solutions of Bader’s equation

rqðrÞ � nðrÞ ¼ 0; 8 r 2 SðrÞ ð1:1Þ
for defining topological atoms in molecules. In this
section we comment on this point by performing a basic
and simple mathematical analysis. Quoting the authors
‘‘... any surface that originates from a nucleus and
follows the gradient of density satisfies Eq. (1.1) since
the normal is orthogonal to �q(r) at every point. That is
to say that Eq. (1.1) has an infinite number of solu-
tions...’’. What the authors state is, rigorously speaking,
true and, to our knowledge, it is also true that so far this
problem has never been explicitly treated in a rigorous
mathematical analysis; however, we can anticipate that
this is not an argument which can be used to fully
invalidate the application of the theory but can be
certainly used to promote a further formal and math-

ematical development. The main reason why the validity
of the theory, in the field of chemistry, is not touched by
the previous statements is that among the ‘‘infinite
number of solutions’’ the authors refer to, there exists
only one solution which corresponds to a ‘‘proper
chemical’’ topological interatomic surface, and this is
the surface Bader explicitly refers to in all his work (see,
for example, the most recent [2]). In the following part of
this contribution, we show the formal uniqueness of this
interatomic surface when the problem is mathematically
defined in a proper way. However, we must underline
that in the present formulation of Bader’s theory and
contrary to his opinion, the formal uniqueness of such a
solution does not automatically emerge, but somehow is
a consequence of what we require a posteriori from a
chemical point of view rather than a natural conse-
quence of the mathematical formulation of the theory
itself; this point is a delicate one and we will try to make
it clear. In our work [3, 4], we emphasized that Eq. (1.1)
can also be interpreted in simple topological terms
without any reference to the variational problem from
which it is originated (and so to Bader’s theory); the
density q(r) can be considered as a (regular) three-
dimensional manifold, and the problem of finding
interatomic surfaces is reduced to determining separatrix
surfaces of a vector field �q(r). This procedure allows
one to partition the electron density in real space in
nonoverlapping regions, each of which is bounded by
the local zero flux surface, and each of these disjoint
regions contains a nucleus which can be considered as
the ‘‘source’’ of the local atomic topology. This topo-
logical problem can be translated in mathematical terms
via a partial differential equation which explicitly
involves the zero flux surface, S(r). To do so, first let
us write the formal equation for the surface S, which
takes the simple general form of Sðx; y; zÞ ¼ 0, it follows
that the components of the vector n(r) normal to the
surface at every point take the following form:

nxðrÞ ¼
oSðrÞ
ox

; nyðrÞ ¼
oSðrÞ
oy

; nzðrÞ ¼
oSðrÞ
oz

: ð1:2Þ

Substituting Eq. (1.2) in Eq. (1.1) one obtains
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The fundamental mathematical problem of the existence
and uniqueness of a solution for such an equation is
expressed by the theorem of Kovalevskaja for the
existence and uniqueness of the solutions of partial
differential equations (for more details about the whole
procedure see Ref. [6]). What defines a differential
equation and makes a particular solution unique, i.e.
selects one solution within a class of solutions, is the
initial or boundary condition. Such a condition consists
of imposing a priori that the solution passes through a
given curve. A partial differential equation can be solved
only when an initial condition is explicitly assigned; this
means that the existence and uniqueness of a particular
explicit solution can be defined only when an initial
condition is given. At this point if we analyze how the
equation of the zero flux surface is formulated and
presented in Bader’s work (see Ref. [7] as the most
representative reference) it is evident that is not linked to
any explicit initial condition. In particular, one should
not confuse the techniques used to define atoms in
molecules based on Bader’s theory [5, 8, 9, 10] and
consisting in defining the atomic volume by following
the gradient paths from a nucleus to their turning point,
with the formal (and also numerical) solution of
Eq. (1.3): in the current form, this equation is not
uniquely defined since is not related to an explicit initial
condition and as a consequence from a rigorous
mathematical point of view it defines a class of solutions
not a single and unique one. At this point the reason also
becomes clear why we previously stated that, rigorously
speaking, Cassam-Chenaı̈ and Jayatilaka are right; an
initial condition in a mathematical rigorous equation
does not automatically emerge from the present formu-
lation of Bader’s theory as a consequence of the theory
itself. We underline ‘‘present formulation’’ because, at
least so far, this fact has never been pointed out in the
literature in explicit terms. As a consequence the surface
which properly defines atoms in molecules, and is the
one Bader refers to, is only one of the possible solutions
related to the choice of a particular initial condition. So
how can we decide the way to choose an initial condition
which leads to a proper chemical partitioning of the
charge density?

As stated before, if one searches (given the proper
curve as the initial condition) for the ‘‘separatrix sur-
face’’ of the vector field �q(r), as is well known in to-
pology, the results will be a unique surface which divides
the electron density, q(r), in disjoint regions, each of
which contains a nucleus; this would be a chemically
reasonable partitioning suitable for applications. On the
other hand, if one chooses as the initial condition a curve
which leads to the kind of solution Cassam-Chenaı̈ and
Jayatilaka refer to, then there would be several prob-
lems: one problem would be the partitioning of nuclear
charge and how to assign it to a particular entity, but
probably this is only a minor problem. A major problem
would be the fact that one cannot even talk about atoms
since there would be single entities which do not recover
any of the properties of an atom (as Bader underlined

very often in his work [2]). So from a chemical point of
view the formal choice of an initial condition is not
difficult: we search for the ‘‘separatrix surface’’ of �q(r)
and we know that formally this is unique and is defined
by the appropriate initial condition. In practical appli-
cation we do not need to specifiy the initial condition; in
fact the ‘‘techniques’’ of Refs. [5, 8, 9, 10] would be
reasonable since in practical numerical terms the solu-
tion obtained by these techniques and a numerical so-
lution of the partial differential equation with the
appropriate initial condition produces the same chemical
entities. In the light of what was stated previously we can
conclude that the application of Bader’s theory, having
in mind the chemical idea of atoms and molecules, re-
main fully valid. This sort of chemical empirical argu-
ment is satisfying for practical applications, but still does
not answer the major question. We are still left with a
partial differential equation that in order to be uniquely
and rigorously defined needs an explicit initial condition
which must emerge from the mathematics of Bader’s
procedure in applying the Schwinger principle of sta-
tionary action. Although not in an explicit form, it seems
that a boundary condition is automatically assigned by
the variational problem. In Bader’s procedure the nec-
essary condition to obtain the zero flux equation is that
an integral over a differentiable surface bounding a
subvolume of the whole space (i.e. closed regular sur-
face) must vanish; this is, as underlined before, a nec-
essary condition to obtain what Bader refers to as a
‘‘proper quantum subsystem’’ [11] (quantum atom). A
regular surface differentiable at every point and bound-
ing a subvolume can certainly be obtained from solving
the problem of finding the separatrix of �q(r) [given the
condition of regularity of q(r), which is usually fulfilled
in quantum chemistry]; this is not true for solutions
obtained from an initial condition of the kind suggested
by Cassam-Chenaı̈ and Jayatilaka. In this case one
would find that the surface is not closed or is not dif-
ferentiable everywhere or both. In fact, let us consider
the nucleus to be a pointlike charge or a spherical
extended region (as usually happens in applications
and theoretical models). In these cases we have two
possibilities:

1. The pointlike nucleus is part of the surface solution.
In this case the partitioning of the whole atom will
consist at least of two regions which overlap at the
point where the nucleus is and create the problem of
partitioning the nuclear charge. This is different from
the case of the ‘‘separatrix surface’’ where the space is
partitioned in disjoint regions and the electronic as
well as the nuclear charge are uniquely assigned to
one specific atomic entity.

2. The nucleus is a cusp or an extended spherical region,
so a solution that originates from a nucleus and
follows the gradient of density will lead to an open
domain or to a surface which is not differentiable
everywhere (this is evident in the case of a cusp); in
fact the surface solution which contains the gradient
paths in the neighborhood of the nuclear region is
normal to the spherical surface of the nucleus. This
means that in order to have a closed surface in the
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neighborhood of the nuclear region one should join
part of the surface of the nucleus to its normal surface
which contains the gradient paths; this generates an
irregular nondifferentiable topological region (a sort
of step surface).

However, and to a first approximation this is the
important point, what we can certainly have by accept-
ing the ‘‘separatrix surface’’ as the solution of Eq. (1.3),
is the consistency between the chemical idea of atoms
and the mathematical variational procedure adopted by
Bader. The kind of solution proposed by Cassam-
Chenaı̈ and Jayatilaka presents evident problems in
practical applications as well as in mathematical terms;
however, in this latter case a rigorous mathematical
formulation should be carried out in order to make the
theory of atoms in molecules formally complete. This
task goes beyond this communication, and possibly will
be presented elsewhere.

2 Conclusions

In the light of what was reported here, we can conclude
that Cassam-Chenaı̈ and Jayatilaka pointed out a
delicate issue about the theory of atoms in molecules.
The answer to their statement can be separated into two
parts. On one hand, from a chemical point of view and
for practical applications, we can be assured that the
interatomic surface is unique since the partial differential
equation related to this surface is uniquely defined by the
initial condition, and as an initial condition we choose
the one which leads to the ‘‘separatrix surface’’ of �q(r)
which allows us to have ‘‘atomic entities’’ in multiatomic
systems consistent with the chemical idea of atoms;

however, at this level our choice is not governed by any
rigorous mathematical principle connected to the math-
ematical formulation of the theory. On the other hand, a
more profound problem arises and is connected with the
formulation of the theory itself; does an initial condition
for the partial differential equation emerge automatically
from the mathematical procedure of Bader’s theory, as
should occur for a self-complete theory?

We conclude that this is possible, and again formally
such a condition leads to the ‘‘separatrix surface’’ of
�q(r). The final conclusion is that the separatrix surface’’
of �q(r) is consistent with the chemical idea of atoms
and with Bader’s theoretical framework; this surface is
unique. As a final comment. we add that although the
article of Cassam-Chenaı̈ and Jayatilaka may be incor-
rect in some points, it shows the necessity of the further
development of the theory of atoms in molecules, at least
at a formal level.
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